Search results for " 20C15"

showing 4 items of 4 documents

The average element order and the number of conjugacy classes of finite groups

2021

Abstract Let o ( G ) be the average order of the elements of G, where G is a finite group. We show that there is no polynomial lower bound for o ( G ) in terms of o ( N ) , where N ⊴ G , even when G is a prime-power order group and N is abelian. This gives a negative answer to a question of A. Jaikin-Zapirain.

20D15 20C15 20E45Finite groupPolynomialAlgebra and Number TheoryGroup (mathematics)010102 general mathematicsGroup Theory (math.GR)01 natural sciencesUpper and lower boundsElement OrderCombinatoricsConjugacy class0103 physical sciencesFOS: MathematicsOrder (group theory)010307 mathematical physics0101 mathematicsAbelian groupMathematics - Group TheoryG110 Pure MathematicsMathematics
researchProduct

Brauer correspondent blocks with one simple module

2019

One of the main problems in representation theory is to understand the exact relationship between Brauer corresponding blocks of finite groups. The case where the local correspondent has a unique simple module seems key. We characterize this situation for the principal p-blocks where p is odd.

20C20 20C15MatemáticasApplied MathematicsGeneral Mathematics010102 general mathematicsPrincipal (computer security)MathematicsofComputing_GENERAL01 natural sciencesRepresentation theoryAlgebra0103 physical sciencesKey (cryptography)FOS: Mathematics010307 mathematical physics0101 mathematicsRepresentation Theory (math.RT)Simple moduleMathematics - Representation TheoryMathematics
researchProduct

Finite 2-groups with odd number of conjugacy classes

2016

In this paper we consider finite 2-groups with odd number of real conjugacy classes. On one hand we show that if $k$ is an odd natural number less than 24, then there are only finitely many finite 2-groups with exactly $k$ real conjugacy classes. On the other hand we construct infinitely many finite 2-groups with exactly 25 real conjugacy classes. Both resuls are proven using pro-$p$ techniques and, in particular, we use the Kneser classification of semi-simple $p$-adic algebraic groups.

Discrete mathematicsApplied MathematicsGeneral Mathematics010102 general mathematicsMathematicsofComputing_GENERALNatural number20D15 (Primary) 20C15 20E45 20E18 (Secondary)Group Theory (math.GR)01 natural sciencesConjugacy class0103 physical sciencesFOS: Mathematics010307 mathematical physics0101 mathematicsAlgebraic numberMathematics - Group TheoryMathematics
researchProduct

p-Blocks relative to a character of a normal subgroup

2018

Abstract Let G be a finite group, let N ◃ G , and let θ ∈ Irr ( N ) be a G-invariant character. We fix a prime p, and we introduce a canonical partition of Irr ( G | θ ) relative to p. We call each member B θ of this partition a θ-block, and to each θ-block B θ we naturally associate a conjugacy class of p-subgroups of G / N , which we call the θ-defect groups of B θ . If N is trivial, then the θ-blocks are the Brauer p-blocks. Using θ-blocks, we can unify the Gluck–Wolf–Navarro–Tiep theorem and Brauer's Height Zero conjecture in a single statement, which, after work of B. Sambale, turns out to be equivalent to the Height Zero conjecture. We also prove that the k ( B ) -conjecture is true i…

Normal subgroupFinite groupAlgebra and Number TheoryConjecture20D 20C15010102 general mathematicsGroup Theory (math.GR)01 natural sciences010101 applied mathematicsCombinatoricsConjugacy classFOS: MathematicsPartition (number theory)Representation Theory (math.RT)0101 mathematicsMathematics - Group TheoryMathematics - Representation TheoryMathematicsJournal of Algebra
researchProduct